A Note on The Linear Arboricity of Planar Graphs without 4-Cycles∗

نویسندگان

  • Jian-Liang Wu
  • Jian-Feng Hou
  • Xiang-Yong Sun
چکیده

The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that if G is a planar graph with ∆(G) ≥ 5 and without 4-cycles, then la(G) = ⌈∆(G) 2 ⌉. Moreover, the bound that ∆(G)≥ 5 is sharp.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Linear Arboricity of Planar Graphs without 5-, 6-Cycles with Chords

The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that for a planar graph G with maximum degree ∆(G) ≥ 7, la(G) = d 2 e if G has no 5-cycles with chords.

متن کامل

On list vertex 2-arboricity of toroidal graphs without cycles of specific length

The vertex arboricity $rho(G)$ of a graph $G$ is the minimum number of subsets into which the vertex set $V(G)$ can be partitioned so that each subset induces an acyclic graph‎. ‎A graph $G$ is called list vertex $k$-arborable if for any set $L(v)$ of cardinality at least $k$ at each vertex $v$ of $G$‎, ‎one can choose a color for each $v$ from its list $L(v)$ so that the subgraph induced by ev...

متن کامل

The Linear Arboricity of Planar Graphs without 5-Cycles with Chords

The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. In this paper, it is proved that for a planar graph G with maximum degree ∆(G)≥ 7, la(G) = d(∆(G))/2e if G has no 5-cycles with chords. 2010 Mathematics Subject Classification: 05C15

متن کامل

Vertex arboricity of toroidal graphs with a forbidden cycle

The vertex arboricity a(G) of a graph G is the minimum k such that V (G) can be partitioned into k sets where each set induces a forest. For a planar graph G, it is known that a(G) ≤ 3. In two recent papers, it was proved that planar graphs without k-cycles for some k ∈ {3, 4, 5, 6, 7} have vertex arboricity at most 2. For a toroidal graph G, it is known that a(G) ≤ 4. Let us consider the follo...

متن کامل

The List Linear Arboricity of Planar Graphs

The linear arboricity la(G) of a graph G is the minimum number of linear forests which partition the edges of G. An and Wu introduce the notion of list linear arboricity lla(G) of a graph G and conjecture that lla(G) = la(G) for any graph G. We confirm that this conjecture is true for any planar graph having ∆ > 13, or for any planar graph with ∆ > 7 and without i-cycles for some i ∈ {3, 4, 5}....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009